40 CFR Ch. I (7-1-10 Edition) ## Pt. 82, Subpt. A, App. E | Heading/Subheading | Article Description | |--------------------|---| | 3901 | | | 3902 | Pre-polymers based on propylene or other olefins (in primary forms). | | 3903, 3907, 3909 | Pre-polymers based on styrene (in primary forms), epoxide and phenols | #### APPENDIX E TO SUBPART A OF PART 82— ARTICLE 5 PARTIES Afghanistan, Albania, Algeria, Angola, Antigua & Barbuda, Argentina, Armenia, Bahamas, Bahrain, Bangladesh, Barbados, Belize, Benin, Bhutan, Bolivia, Bosnia and Herzegovina, Botswana, Brazil, Brunei Darussalam, Burkina Faso, Burundi, Cam-bodia, Cameroon, Cape Verde, Central African Republic, Chad, Chile, China, Colombia, Comoros, Congo, Congo, Democratic Republic of, Cook Islands, Cost Rica, Côte d'Ivoire, Croatia, Cuba, Djibouti, Dominica, Dominican Republic, Ecuador, Egypt, El Salvador, Equatorial Guinea, Eritrea, Ethiopia, Fiji, Gabon, Gambia, Georgia, Ghana, Grenada, Guatemala, Guinea, Guinea Bissau, Guyana, Haiti, Honduras, India, Indonesia, Iran, Islamic Republic of, Iraq, Jamaica, Jordan, Kenya, Kiribati, Korea, People's Democratic Republic of, Korea, Republic of, Kuwait, Kyrgyzstan, Lao People's Democratic Republic, Lebanon, Lesotho, Liberia, Libyan Arab Jamahiriya, Madagascar, Malawi, Malaysia, Maldives, Mali, Marshall Islands, Mauritania, Mauritius, Mexico, Micronesia, Federal States of, Moldova, Mongolia, Montenegro, Morocco, Mozambique, Myanmar, Namibia, Nauru, Nepal, Nicaragua, Niger, Nigeria, Niue, Oman, Pakistan, Palau, Panama, Papua New Guinea, Paraguay, Peru, Philippines, Qatar, Rwanda, Saint Kitts and Nevis, Saint Lucia, Saint Vincent & the Grenadines, Samoa, Sao Tome and Principe, Saudi Arabia, Senegal, Serbia, Seychelles, Sierra Leone, Singapore, Solomon Islands, Somalia, South Africa, Sri Lanka, Sudan, Suriname, Swaziland, Syrian Arab Republic, Tanzania, United Republic of, Thailand, The Former Yugoslav Republic of Macedonia, Timor-Leste, Togo, Tonga, Trinidad and Tobago, Tunisia, Turkey, Turkmenistan, Tuvalu, Uganda, United Arab Emirates, Uruguay, Vanuatu, Venezuela, Viet Nam, Yemen, Zambia, Zimbabwe. [74 FR 66448, Dec. 15, 2009] APPENDIX F TO SUBPART A OF PART 82—LISTING OF OZONE-DEPLETING CHEMICALS | Controlled substance | ODP | AT L | CLP | BLP | | |--|-------------|--------------|----------|------|--| | A. Class I: | | | | | | | 1. Group I: | | | | | | | CFCl ₃ -Trichlorofluoromethane (CFC-11) | 1.0 | 60.0 | 1.0 | 0.00 | | | CF ₂ Cl ₂ -Dichlorodifluoromethane (CFC-12) | 1.0 | 120.0 | 1.5 | 0.00 | | | C ₂ F ₃ Cl ₃ -Trichlorotrifluoroethane (CFC-113) | 0.8 | 90.0 | 1.11 | 0.00 | | | C ₂ F ₄ Cl ₂ -Dichlorotetrafluoroethane (CFC-114)
C ₂ F ₅ Cl-Monochloropentafluoroethane (CFC- | 1.0 | 200.00 | 1.8 | 0.00 | | | | 0.6 | 400.0 | 2.0 | 0.00 | | | 115) All isomers of the above chemicals | | | | 0.00 | | | 2. Group II: | | | l erveuj | I | | | CF ₂ CIBr-Bromochlorodifluoromethane (Halon- | | | | | | | 1211) | 3.0 | 12 | 0.06 | 0.13 | | | , | | -18 | 08 | 03 | | | CF ₃ Br-Bromotrifluoromethane (Halon-1301) | 10.0 | 72 | 0.00 | 1.00 | | | | | - 107 | | | | | C ₂ F ₄ Br ₂ -Dibromotetrafluoroethane (Halon- | | | | | | | 2402) | 6.0 | 23 | 0.00 | 0.30 | | | | | | | | | | All isomers of the above chemicals | [Reserved] | | 1 | | | | 3. Group III: | 4.0 | 400 | 0.00 | 0.00 | | | CF ₃ Cl-Chlorotrifluoromethane (CFC-13) | 1.0 | 120 | 0.88 | 0.00 | | | C ₂ FCl ₅ - (CFC-111) | -250
1.0 | - 1.83
60 | 1.04 | 0.00 | | | O ₂ FOI ₅ - (OFO-111) | -90 | - 1.56 | 1.04 | 0.00 | | | C ₂ F ₂ Cl ₄ - (CFC-112) | 1.0 | 60 | 0.90 | 0.00 | | | 02 1 2 014- (01 0-112) | -90 | - 1.35 | 0.90 | 0.00 | | | C ₃ FCl ₇ - (CFC-211) | 1.0 | 100 | 1.76 | 0.00 | | | 03.01/ (0.02.1) | -500 | -8.81 | "" | 0.00 | | | C ₃ F ₂ Cl ₆ - (CFC-212) | 1.0 | 100 | 1.60 | 0.00 | | | (| -500 | -7.98 | | | | | C ₃ F ₃ Cl ₅ - (CFC-213) | 1.0 | 100 | 1.41 | 0.00 | | | · • • • • • • • • • • • • • • • • • • • | -500 | -7.06 | | | | ## **Environmental Protection Agency** # Pt. 82, Subpt. A, App. F | Controlled substance | ODP | AT L | CLP | BLP | |---|--------------------------|----------------|------------|------| | C ₃ F ₄ Cl ₄ - (CFC-214) | 1.0 | 100 | 1.20 | 0.00 | | C ₃ F ₅ Cl ₃ -(CFC-215) | -500
1.0 | -6.01
100 | 0.96 | 0.00 | | C ₃ F ₆ Cl ₂ - (CFC-216) | -500
1.0 | -4.82
100 | 0.69 | 0.00 | | C ₃ F ₇ Cl- (CFC-217) | -500
1.0 | - 3.45
100 | 0.37 | 0.00 | | All isomers of the above chemicals | -500 | – 1.87
[Res | erved] | | | 4. Group IV: CCl ₄ -Carbon Tetrachloride | 1.1 | 50.0 | 1.0 | 0.00 | | 5. Group V:
C ₂ H ₃ Cl ₃ -1,1,1 Trichloroethane (Methyl chloro- | | | | | | form) | 0.1 | 6.3 | 0.11 | 0.00 | | 1,1,2-trichloroethane | | [Res | erved] | | | 6. Group VI: CH3Br-Bromomethane (Methyl Bromide) | 0.7 | | [Reserved] | | | 7. Group VII:
CHFBr ₂ | 1.00 | | [Reserved] | | | CHF ₂ Br-(HBFC–22B1) | 0.74 | | [Reserved] | | | CH ₂ FBr | 0.73 | | [Reserved] | | | C ₂ HFBr ₄ | 0.3-0.8 | | [Reserved] | | | C ₂ HF ₂ Br ₃ | 0.5–1.8 | | [Reserved] | | | C ₂ HF ₃ Br ₂ | 0.4-16 | | [Reserved] | | | C₂HF₄Br | 0.7-1.2 | | [Reserved] | | | C ₂ H ₂ FBr ₃ | 0.1–1.1 | | [Reserved] | | | C ₂ H ₂ F ₂ Br ₂ | 0.2-1.5 | | [Reserved] | | | C ₂ H ₂ F ₃ Br | 0.7-1.6 | | [Reserved] | | | C ₂ H ₃ FBr ₂ | 0.1-1.7 | | [Reserved] | | | C ₂ H ₃ F ₂ Br | 0.2-1.1 | | [Reserved] | | | C ₂ H ₄ FBr | 0.07-0.1 | | [Reserved] | | | C ₃ HFBr ₆ | 0.3-1.5 | | [Reserved] | | | C ₃ HF ₂ Br ₅ | 0.2-1.9 | | [Reserved] | | | C ₃ HF ₃ Br ₄ | 0.3-1.8 | | [Reserved] | | | C ₃ HF ₄ Br ₃ | 0.5-2.2 | | [Reserved] | | | C ₃ HF ₅ Br ₂ | 0.9-2.0 | | [Reserved] | | | C ₃ HF ₆ Br | 0.7-3.3 | | [Reserved] | | | C ₃ H ₂ FBr ₅ | 0.1-1.9 | | [Reserved] | | | C ₃ H ₂ F ₂ Br ₄ | 0.2-2.1 | | [Reserved] | | | C ₃ H ₂ F ₃ Br ₃ | 0.2-5.6 | | [Reserved] | | | C ₃ H ₂ F ₄ Br ₂ | 0.3-7.5 | | [Reserved] | | | C ₃ H ₂ F ₅ Br | 0.9-1.4 | | [Reserved] | | | C ₃ H ₃ FBR ₄ | 0.08-1.9 | | [Reserved] | | | C ₃ H ₃ F ₂ Br ₃ | 0.1-3.1 | | [Reserved] | | | C ₃ H ₃ F ₃ Br ₂ | 0.1-2.5 | | [Reserved] | | | C ₃ H ₃ F ₄ Br | 0.3-4.4 | | [Reserved] | | | C ₃ H ₄ FBr ₃ | 0.03-0.3 | | [Reserved] | | | C ₃ H ₄ F ₂ Br ₂ | 0.1-1.0 | | [Reserved] | | | C ₃ H ₄ F ₃ Br | 0.07-0.8 | | [Reserved] | | | C ₃ H ₅ FBr ₂ | 0.04-0.4 | | [Reserved] | | | C ₃ H ₅ F ₂ Br | 0.07-0.8 | | [Reserved] | | | C ₃ H ₆ FB | 0.02-0.7 | | [Reserved] | | | 8. Group VIII:
CH ₂ BrCl (Chlorobromomethane) | 0.12 | | [Reserved] | | | B. Class II: CHFCl ₂ -Dichlorofluoromethane (HCFC-21) | [Reserved] | 2.1 | 0.03 | 0.00 | | CHF ₂ Cl-Chlorodifluoromethane (HCFC-22) | 0.05 | 15.3 | 0.14 | 0.00 | | CH ₂ FCI-Chlorofluoromethane (HCFC-31) | [Reserved] | 1.44 | 0.02 | 0.00 | | C ₂ HFCl ₄ - (HCFC-121) | [Reserved] | 0.6 | 0.01 | 0.00 | | C ₂ HF ₂ Cl ₃ - (HCFC-122) | [Reserved] | 1.4 | 0.01 | 0.00 | | C ₂ HF ₃ Cl ₂ - (HCFC-123) | 0.02 | 1.6 | 0.016 | 0.00 | | C ₂ HF ₄ Cl- (HCFC-124) | 0.02 | 6.6 | 0.04 | 0.00 | | C ₂ H ₂ FCl ₃ - (HCFC-131) | [Reserved] | 4.0 | 0.06 | 0.00 | | C ₂ H ₂ F ₂ Cl ₂ - (HCFC-132b) | [Reserved] | 4.2 | 0.05 | 0.00 | | C ₂ H ₂ F ₃ Cl- (HCFC-133a) | [Reserved] | 4.8 | 0.03 | 0.00 | | C ₂ H ₃ FCl ₂ - (HCFC-141b) | 0.12 | 7.8 | 0.10 | 0.00 | | C ₂ H ₃ F ₂ Cl- (HCFC-142b) | 0.06 | 19.1 | 0.14 | 0.00 | | C ₃ HFCl ₆ - (HCFC-221) | [Reserved] | 19.1 | 0.14 | 0.00 | | C ₃ HF ₂ Cl ₅ - (HCFC-222) | [Reserved] | | | 0.00 | | C ₃ HF ₂ Cl ₅ - (HCFC-222) | [Reserved] | | | 0.00 | | | | | | 0.00 | | Ca HE, Clas (HCEC-224) | | | | | | C ₃ HF ₄ Cl ₃ - (HCFC-224) | [Reserved]
[Reserved] | 1.5 | 0.01 | 0.00 | ## Pt. 82, Subpt. A, App. G | Controlled substance | ODP | AT L | CLP | BLP | |---|------------|------|------|------| | (HCFC-225cb) | [Reserved] | 5.1 | 0.04 | 0.00 | | C ₃ HF ₆ CI- (HCFC-226) | [Reserved] | | | 0.00 | | C ₃ H ₂ FCl ₅ - (HCFC-231) | [Reserved] | | | 0.00 | | C ₃ H ₂ F ₂₄ - (HCFC-232) | [Reserved] | | | 0.00 | | C ₃ H ₂ F ₃ Cl ₃ - (HCFC-233) | [Reserved] | | | 0.00 | | C ₃ H ₂ F ₄ Cl ₂ - (HCFC-234) | [Reserved] | | | 0.00 | | C ₃ H ₂ F ₅ Cl- (HCFC-235) | [Reserved] | | | 0.00 | | C ₃ H ₃ FCl ₄ - (HCFC-241) | [Reserved] | | | 0.00 | | C ₃ H ₃ F ₂ Cl ₃ - (HCFC-242) | [Reserved] | | | 0.00 | | C ₃ H ₃ F ₃ Cl ₂ - (HCFC-243) | [Reserved] | | | 0.00 | | C ₃ H ₃ F ₄ Cl- (HCFC-244) | [Reserved] | | | 0.00 | | C ₃ H ₄ FCl ₃ - (HCFC-251) | [Reserved] | | | 0.00 | | C ₃ H ₄ F ₂ Cl ₂ - (HCFC-252) | [Reserved] | | | 0.00 | | C ₃ H ₄ F ₃ Cl- (HCFC-253) | [Reserved] | | | 0.00 | | C ₃ H ₅ FCl ₂ - (HCFC-261) | [Reserved] | | | 0.00 | | C ₂ H ₅ F ₂ Cl- (HCFC-262) | [Reserved] | | | 0.00 | | C ₃ H ₆ FCI- (HCFC-271) | [Reserved] | | | 0.00 | | All isomers of the above chemicals | [Reserved] | | | | [60 FR 24986, May 10, 1995, as amended at 68 FR 42894, July 18, 2003] APPENDIX G TO SUBPART A OF PART 82— UNEP RECOMMENDATIONS FOR CON-DITIONS APPLIED TO EXEMPTION FOR ESSENTIAL LABORATORY AND ANA-LYTICAL USES - 1. Essential laboratory and analytical uses are identified at this time to include equipment calibration; use as extraction solvents, diluents, or carriers for chemical analysis; biochemical research; inert solvents for chemical reactions, as a carrier or laboratory chemical and other critical analytical and laboratory purposes. Pursuant to Decision XI/15 of the Parties to the Montreal Protocol, effective January 1, 2002 the following uses of class I controlled substances are not considered essential under the global laboratory exemption: - a. Testing of oil and grease and total petroleum hydrocarbons in water; - b. Testing of tar in road-paving materials; and - c. Forensic finger printing. Production for essential laboratory and analytical purposes is authorized provided that these laboratory and analytical chemicals shall contain only controlled substances manufactured to the following purities: CTC (reagent grade)—99.5 1,1,1,-trichloroethane—99.5 CFC-11—99.5 CFC-13—99.5 CFC-12—99.5 CFC-113—99.5 CFC-114—99.5 Other w/ Boiling P>20 degrees C—99.5 Other w/ Boiling P<20 degrees C—99.0 d. Testing of organic matter in coal. 2. These pure, controlled substances can be subsequently mixed by manufacturers, agents or distributors with other chemicals controlled or not controlled by the Montreal Protocol as is customary for laboratory and analytical uses. - 3. These high purity substances and mixtures containing controlled substances shall be supplied only in re-closable containers or high pressure cylinders smaller than three litres or in 10 millilitre or smaller glass ampoules, marked clearly as substances that deplete the ozone layer, restricted to laboratory use and analytical purposes and specifying that used or surplus substances should be collected and recycled, if practical. The material should be destroyed if recycling is not practical. - 4. Parties shall annually report for each controlled substance produced: the purity; the quantity; the application, specific test standard, or procedure requiring its uses; and the status of efforts to eliminate its use in each application. Parties shall also submit copies of published instructions, standards, specifications, and regulations requiring the use of the controlled substance. - 5. Pursuant to Decision XVIII/15 of the Parties to the Montreal Protocol, methyl bromide is exempted for the following approved essential laboratory and analytical purposes listed in following items (a) through (d). Use of methyl bromide for field trials is not an approved use under the global laboratory and analytical use exemption. The provisions of Appendix G, paragraphs (1), (2), (3), and (4), regarding purity, mixing, container, and reporting requirements for other exempt ODSs, also apply to the use of methyl bromide under this exemption. - a. Methyl bromide is exempted as an approved essential laboratory and analytical use as a reference or standard to calibrate equipment which uses methyl bromide, to monitor methyl bromide emission levels, or to determine methyl bromide residue levels in goods, plants and commodities; - b. Methyl bromide is exempted as an approved essential laboratory and analytical